自旋电子学与自电子器件简述.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
自旋电子学与自电子器件简述

自旋电子学与自旋电子器件简述 陈闽江,邱彩玉,孙连峰 (国家纳米科学中心 器件研究室 北京 100190) 一、引言 2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert教授和德国Peter Grunberg教授。其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G乃至上百G1988年在磁性多层膜中发现巨磁电阻效应(Giant Magnetoresistance,GMR),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科——自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。中国科学院物理研究所朱涛研究员表示:“Albert Fert和Peter Grunberg种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗——自旋电子学,这是一个成长很快、前景广阔的磁学分支。” 二、电子自旋与自旋电子学 要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。它们的存在标志电子还有一个新的内禀自由度。所以电子状态的完全描述不但包括空间三个自由度的坐标(r),还必须考虑其自旋状态。更确切地说,要考虑自旋在某给定方向(例如z轴方向)的投影的两个可能取值的波幅,即波函数中还应该包含自旋投影这个变量(习惯上取为),从而记为。与连续变量r不同,只能取两个离散值。 接下来,认识电的和磁的相互作用在强度上的差异和不同的特点,可以了解自旋电子学的潜力。电荷周围存在电场,通过静电力和其他电荷发生相互作用,这种相互作用是强的和长程的。在常见的半导体中,两个相距5的元电荷间的相互作用能可达0.2eV,它正比于距离的倒数。1V的电压可使载流子改变1eV的能量。然而距离为5的一对电子自旋之间的磁偶极耦合能却只有约eV量级。与静电相互作用相比,它是短程的。在高达1T的磁通密度下,自旋的能量变化只有eV量级。和静电相互作用相比,磁的相互作用要小几个数量级。就存储应用而言,磁相互作用的短程性和弱的相互作用能意味着低功耗和高存储密度,因为靠得很近的磁量子位仍可以保持相互的独立性。 虽然电子自旋有这么多的优点可被利用,但是二次大战之后,世界文明的发展都只和电子学有关系,人们从不关心电子的磁性(电子自旋)。经过多年发展,小到手表,大到宇宙,电子的电性有了充分利用,但是磁性一直沉睡着。直到1988年,巨磁电阻效应的发现,第一次揭示了电子自旋的作用,因而具有重大的科学意义。现在的超大规模集成电路在1平方厘米的面积上可以集成107~108个电子元件。而目前公认的器件最小尺度是20纳米,一旦小于这个尺寸,传统的工作原理如欧姆定理等就会失效,量子效应则开始起作用。量子效应是几率性、不可预测的,将导致器件工作不稳定。要想突破这个尺寸限制,就必须利用电子的自旋,把自旋作为信息储存、处理、输运的主体。 自旋电子学是基于操纵和控制自旋的电子学。它或将自旋(或磁性)作为信息的载体,通过电流或电压进行操控;或将自旋或磁场作为操控电荷或电流信息的手段。操纵电子自旋是指控制自旋的布局,或操控载流子集合的自旋的相,或对单个电子或少数电子自旋进行相干操控。自旋电子学可同时利用电子的自旋和电荷的性质,以实现电子学的功能或量子计算。自旋电子学的研究对象包括电子的自旋极化、自旋相关散射、自旋弛豫以及与此相关的性质及其应用等。目前,自旋电子学的基础研究和应用开发都为物理学、材料科学和电子工程学等领域提供了广阔的发展天地。按照美国加州大学Awschalom教授的观点,自旋电子学器件可分为三个层次:一是基于铁磁性金属的器件;二是将自旋注入半导体器件;三则是单电子自旋器件。目前进入应用的器件(如GMR自旋阀)还只处于第一层次;对于自旋控制和自旋极化输运的了解处于较为肤浅的阶段;对各种新现象、新效应的理解基本上只是半经典的和维象的。因此,自旋电子学的发展还面临很多更大的挑战,当然,机遇与挑战是并存的。 三、基于铁磁金属的自旋电子器件 对于普通金属和半导体,自旋向上和自旋向下的电子在数量上是一样的,所以传统的金属电子论往往忽略电子的自旋自由度。但是

文档评论(0)

xll805 + 关注
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档