配方法的几何解释.doc

  1. 1、本文档共1页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
配方法的几何解释

配方法的几何解释 课本中,我们利用了配方法解一元二次方程.实际上,配方法不仅可以用来解一元二次方程,在其他方面还有很多应用. 配方法,顾名思义,就是利用添项或拆项的方法,结合已有项,构造完全平方式.回顾以往知识,我们曾经利用图形面积验证完全平方公式,那么,能否也用图形面积解释配方法解方程的过程呢? 下面我们用几何方法来求方程x2+10x=39的解,把x2+10x解释为右图中多边形ABCDEF的面积,为了求出x,我们考虑把这块图形补成一个正方形,为此必须补上正方形DCGE.从图中可以看出,正方形DCGE的面积为52(它恰好等于原方程中一次项系数一半的平方),由于整个正方形的面积为39+25=64,可知这个正方形的边长为8,又由图形可知边长为x+5,故x=3. 这里,我们直观地看到了配方的几何意义.但求得的解是不完备的,你发现问题了吗?对了,受几何图形的限制,我们只能求出方程的正数解. B A C D E F G 5 x x 5 52 x2 5x 5x

文档评论(0)

cuotian + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档