- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
学位论文_文献综述基于量子遗传算法的函数寻优算法设计.doc
毕业论文(设计)文献综述
题 目: 基于量子遗传算法的函数寻优算法设计
学 院: 数理与信息学院
学生姓名:
专 业: 计算机科学与技术
班 级:
指导教师:
起止日期: 2014年11月28日至2015年1月16日
2015年 1月 15 日文献综述
一、前言
量子遗传算法(Quantum Genetic Algorithm,QGA)[1]是量子计算(Quantum Computing,QC)[2]与遗传算法(Genetic Algorithm,GA )[3]相结合的产物。
量子计算中采用量子态[4]作为基本的信息单元,利用量子态的叠加、纠缠和干涉等特性,可以解决经典计算中的NP问题。如1994年Shor提出第一个量子算法,求解大数质因子分解的经典计算难题,该算法可用于公开秘钥系统RSA[5];1996年Crover提出随机数据库搜索的量子算法,在量子计算机上可实现对未加整理的数据库量级的加速搜索[6]。
遗传算法是处理复杂优化问题的一种方法,其基本思想是模拟生物进化的优胜劣汰规则与染色体的交换机制,通过选择、交叉、变异三种基本操作寻找最优个体。
二、遗传算法概述
遗传算法通过模仿生物的选择、交叉、变异操作,并遵循优胜劣汰的准则及个体染色体的互相交叉这些特点处理问题的一种方法。遗传算法通过目标函数进行全局自适应的概率搜索操作[7],可以解决传统算法不能解决的难题,它与优化规则、问题的特性没有任何关系。由于它有着较好的适用性和鲁棒特性[8],因此它具有诱人的研究和应用前景。然而,若遗传算法中的选择、交叉及变异的操作方式选取不当,那么算法将会在迭代次数、收敛速度方面受到影响,且容易产生局部极值的现象。
三、量子遗传算法概述
量子遗传算法就是基于量子计算原理[9,10]的一种遗传算法,将量子的态矢量表达引入了遗传编码[11],利用量子逻辑门[12]实现染色体的演化,实现了比常规遗传算法更好的效果。
量子遗传算法建立在量子的态矢量表示的基础之上,将量子比特的概率幅[13]表示应用于染色体的编码,使得一条染色体可以表达多个态的叠加,并利用量子逻辑门实现染色体的更新操作,具有种群规模小而不影响算法性能、同时兼有“勘探”和“开采”的能力、收敛速度快和全局寻优能力强的特点[13]。此算法已在多种优化问题中有所应用[14]
四、量子比特编码相关概述
在量子遗传算法中使用的编码方式是基于量子比特的编码。最小信息单儿元一个量子位一一量子比特。一个量子比特的状态可以取0或1,其状态可以表示为|Ψ=α|0+β|1,式中:α,β为代表相应状态出现概率的两个复数(|α|2+|β|2=1);|α|2,|β|2分别为量子比特处于状态0和状态1的概率。所以量子位可以同时包含|0和|1两种状态的信息,一般地,用n个量子位就可以同时表示2n个状态[15]
五、量子门更新相关概述
在量子计算中,通过对量子位状态进行一系列的酉变换来实现某些逻辑变换功能。因此,在一定时间间隔内实现逻辑变换的量子装置,称其为量子门。量子们是在物理上实现量子计算的基础。量子门的更新操作是优化过程中最重要的单元,传统量子遗传算法基本包含量子旋转门更新。其旋转的大小、方向根据事先设计的调整策略而确定[16]。
六、量子交叉概述
量子遗传算法中最能体现个体结构信息的是其进化目标,即个体当前最优确定解以及对应的适应度值。因此,考虑互换个体进化目标以实现个体间信息的交换,从而实现量子交叉的目的。其基本操作就是在个体之间暂时交换最优确定解和最优适应度值,个体接受交叉操作后,它的进化方向将受到其他个体的影响,从而获取新的进化信息。
七、退火算法概述
模拟退火(simulated annealing ,SA)算法的思想最早是由Metropolis等提出的。其出发是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性。模拟退火法是一种通用的优化算法,其物理退火过程由以下三部分组成:
(1)加温过程。其目的是增强粒子的热运动,使其偏离平衡位置。当温度足够高的时候,固体将融为液体,从而消除系统原先存在的非均匀状态。
(2)等温过程。对于与周围环境交换热量而温度不变的封闭系统,系统状态的自发变化总是朝自由减少的方向进行的,当自由能减少到最小时,系统达到平衡状态。
(3)冷却过程。使粒子热运动减弱,系统能量下降,得到晶体结构。
其中,加温过程对应算法
您可能关注的文档
最近下载
- 《可爱的中国》新疆地方教材(小学版)教案 第二单元 美丽的新疆.pdf VIP
- 第5课 新疆是个好地方 《可爱的中国》新疆地方教材(小学版)教案.doc
- 数字普惠金融发展白皮书2019.pdf
- 《山丹丹开花红艳艳》双簧管独奏钢琴伴奏谱201107制谱.doc
- 译林版三起2024秋三年级英语上册Unit3 Are you Su Hai大单元教学设计.pdf
- 部编版语文一年级上册教学反思.pdf VIP
- 摩登家庭台词剧本第一季第一集中英双语左右对照.pdf
- 《可爱的中国》新疆地方教材(小学版)第5课--新疆是个好地方PPT课件.pptx
- (中文版) AWS D1.6 D1.6M-2007 不锈钢焊接规范.pdf
- 2022年最新材料检测报告 SGS 亚克力ROHS10项中文版(2).pdf
文档评论(0)