等离子硅刻蚀及其工艺参数的多尺度优化.docVIP

等离子硅刻蚀及其工艺参数的多尺度优化.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
等离子硅刻蚀及其工艺参数的多尺度优化.doc

等离子硅刻蚀及其工艺参数的多尺度优化   摘要: 用CFDACE+和CFDTOPO分别对容性耦合等离子体反应腔室放电和等离子硅刻蚀过程进行仿真,讨论不同射频电压和腔室条件对等离子体特性的影响.结果表明:随着射频电压的升高,离子的通量增大;在低射频电压时,离子通量随腔室压强的升高而减小,而在高射频电压时趋势则相反.用Kriging模型对影响刻蚀形貌的参数(腔室压强和射频电压)进行优化,结果表明该优化方法可以为工艺条件相近的刻蚀机设备的设计提供参考.   关键词: 硅刻蚀; 容性耦合等离子体; 射频电压; 腔室压强; Kriging模型; 优化   中图分类号: TN405.98; TB115.1文献标志码: B   Abstract: The discharge process in capacitively coupled plasma reaction chamber and the plasma silicon etch process are simulated by CFDACE+ and CFDTOPO. The effect of different radio frequency voltage and chamber conditions on plasma characteristics are discussed. The results show that, with the increase of radio frequency voltage, the flux of ion increases; the flux of ion decreases with the increase of chamber pressure when the radio frequency voltage is low, but the change trend shows in opposite direction while the radio frequency voltage is high. The Kriging model is used to optimize the parameters such as chamber pressure and ration frequency voltage, which have influences on the etching profile. The result shows that the optimization method is feasible, which can provide reference for the design of the etch device in similar process condition.   Key words: silicon etch; capacitively coupled plasma; radio frequency voltage; chamber press; Kriging model; optimization   引言   技术的不断进步对微电子机械系统工艺和器件的设计提出更高的要求[1],如元器件本身的尺寸减小:其表面特征尺寸已由原来的微米级上升到现在的纳米级.传统的湿法刻蚀由于各向异性差、均匀性差、不容易控制等缺点,逐渐被各向异性好、均匀性好、容易控制的干法刻蚀所取代.   在干法刻蚀中等离子体刻蚀应用最广泛,也是微纳米加工能力最强的技术,但是其目前主要依赖于刻蚀经验.由于试验周期长、成本高[2],等离子体刻蚀的工艺仿真技术显得尤为重要.工艺仿真技术可通过建立适当的模型,得到目标结构的仿真效果,因此可以根据刻蚀机腔室的工艺相关参数预测刻蚀形貌,还能够对工艺参数进行优化,进而得到理想的刻蚀形貌.仿真模拟不仅降低微电子机械系统加工工艺的试验成本,提高生产效率,更为等离子体刻蚀的研究提供一定的参考.   1刻蚀形貌分析   1.1腔室模型分析   建立二维轴对称腔室模型,见图1,模拟最简单的容性耦合等离子体放电:Cl2从入口进入腔室内部,被射频电压电离成总体呈电中性的等离子体.电场对离子加速,带有一定能量和角度分布的等离子体轰击刻蚀材料,既发生物理反应又发生化学反应,在刻蚀材料表面形成所需的图案.   2基于Kriging模型的优化设计   通常,评价刻蚀结果质量的参数有剖面的垂直度、刻蚀速率、刻蚀均匀性和刻蚀的选择比等.如果刻蚀的形貌与理想形貌差别较大,即刻蚀垂直度不够好,将直接影响由晶片组成的元器件的质量,甚至不能使用.腔室压强和射频电压是影响刻蚀形貌的重要参数.以这2个参数作为变量,分析不同参数组合下的刻蚀形貌,并以刻蚀垂直度作为目标函数进行初步优

文档评论(0)

sis_lxf + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档