《H_space_v2》.pdf

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《H_space_v2》.pdf

Chapter 7 The Sobolev Spaces Hs Note that H k (Ω) = W k,2 (Ω). 7.1 The Sobolev Spaces H 1 Definition. We say f ∈ H 1 (Ω) if f ∈ L2 (Ω) and it’s distributional gradient ∇f ∈ L2 (Ω). H1 (Ω) is a Hilbert space with norm 1/2 f H 1 (Ω) = |f |2 + |∇f |2 Ω Ω and natural inner product f, g 1 = fg + ∂ f∂ g H (Ω) i i Ω Ω i in H 1 . The term Ω |∇f |2 dx is called the kinetic energy of f . Fourier representation of H 1 (Rn ) norm implies L2 (Rn ) space with different measure by Fourier charac- terization later. Lemma. H 1 (Ω) is complete. Proof. Take {fn } Cauchy in H 1 (Ω) and show fn → f ∈ H 1 (Ω). The proof is based on H¨older’s inequality. Assume {fm } is Cauchy in H 1 (Ω) and, by the completeness 2 2 2 2 of L , there is a f ∈ L (Ω) such that fm → f in L (Ω), and there is a vector b ∈ L such that ∇fm → b in L2 (Ω). ∞ Now we need to show that b = ∇f in D (Ω). Note that for all φ ∈ Cc (Ω) ( φ ∈ D(Ω) ), we have ∇φ(x)f (x) dx = lim ∇φ(x)fm (x) dx. m→∞ Ω With Cauchy-Schwarz inequality we have ∇φ(x) f (x) − fm (x) dx ≤ ∇φL2 (Ω) f − fm L2 (Ω) → 0 Ω since φ ∈ D(

文档评论(0)

wfkm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档