- 1、本文档共11页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《H_space_v2》.pdf
Chapter 7
The Sobolev Spaces Hs
Note that H k (Ω) = W k,2 (Ω).
7.1 The Sobolev Spaces H 1
Definition. We say f ∈ H 1 (Ω) if f ∈ L2 (Ω) and it’s distributional gradient ∇f ∈ L2 (Ω). H1 (Ω) is a Hilbert
space with norm
1/2
f H 1 (Ω) = |f |2 + |∇f |2
Ω Ω
and natural inner product
f, g 1 = fg + ∂ f∂ g
H (Ω) i i
Ω Ω
i
in H 1 . The term Ω |∇f |2 dx is called the kinetic energy of f .
Fourier representation of H 1 (Rn ) norm implies L2 (Rn ) space with different measure by Fourier charac-
terization later.
Lemma. H 1 (Ω) is complete.
Proof. Take {fn } Cauchy in H 1 (Ω) and show fn → f ∈ H 1 (Ω).
The proof is based on H¨older’s inequality. Assume {fm } is Cauchy in H 1 (Ω) and, by the completeness
2 2 2 2
of L , there is a f ∈ L (Ω) such that fm → f in L (Ω), and there is a vector b ∈ L such that ∇fm → b in
L2 (Ω).
∞
Now we need to show that b = ∇f in D (Ω). Note that for all φ ∈ Cc (Ω) ( φ ∈ D(Ω) ), we have
∇φ(x)f (x) dx = lim ∇φ(x)fm (x) dx.
m→∞ Ω
With Cauchy-Schwarz inequality we have
∇φ(x) f (x) − fm (x) dx ≤ ∇φL2 (Ω) f − fm L2 (Ω) → 0
Ω
since φ ∈ D(
您可能关注的文档
- 《HIPS_nano_TiO_2复合材料的吸光及光老化性能研究》.pdf
- 《History of Optimal Power Flow and Formulations - Paper 1》.pdf
- 《Hitec柴油机式UPS技术说明书》.pdf
- 《hive0.8.1+mysql5.5.25安装配置总结》.pdf
- 《HJ-317系列PTC发热元件导热硅胶》.doc
- 《HJ-T 345-2016 水质 铁的测定 邻菲啰啉分光光度法》.pdf
- 《HJ96-2016PH水质自动分析仪技术要求》.pdf
- 《HKDSE_LS_MS_20160166_chi》.pdf
- 《HKPhO_2016_paper》.pdf
- 《HK保监透视201611 ilens3-p3》.pdf
文档评论(0)