《Foundation of Machine Learning [Part05]》.pdf

  1. 1、本文档共48页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Foundation of Machine Learning [Part05]》.pdf

Foundations of Machine Learning Lecture 5 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Kernel Methods Motivation Non-linear decision boundary. Efficient computation of inner products in high dimension. Flexible selection of more complex features. Mehryar Mohri - Foundations of Machine Learning page 3 This Lecture Definitions SVMs with kernels Closure properties Sequence Kernels Negative kernels Mehryar Mohri - Foundations of Machine Learning page 4 Non-Linear Separation Linear separation impossible in most problems. Non-linear mapping from input space to high- dimensional feature space: Φ : X → F . Generalization ability: independent of dim(F ), depends only on ρ and m . Mehryar Mohri - Foundations of Machine Learning page 5 Kernel Methods Idea: • DefineK : X ×X →R , called kernel, such that: Φ(x) · Φ(y) = K (x, y). • K often interpreted as a similarity measure. Benefits: • Efficiency: K is often more efficient to compute than Φ and the dot product. • Flexibility:K can be chosen arbitrarily so long as the existence of Φ is guaranteed (Mercer’s condition). Mehryar Mohri - Foundations of Machine Learning page 6 Mercer’s Condition (Mercer, 1909) Theorem: Let X ×X be a compact subset of RN and letK : X ×X →R be in L∞ (X ×X ) and symmetric. Then, K admits a uniformly convergent expansion ∞ K (x, y) = an φn (x)φn (y),

文档评论(0)

wfkm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档