《Foundation of Machine Learning [Part02]》.pdf

  1. 1、本文档共47页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Foundation of Machine Learning [Part02]》.pdf

Foundations of Machine Learning Lecture 2 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu PAC Learning Concentration Bounds Motivation Some computational learning questions • What can be learned efficiently? • What is inherently hard to learn? • A general model of learning? Complexity • Computational complexity: time and space. • Sample complexity: amount of training data needed to learn successfully. • Mistake bounds: number of mistakes before learning successfully. Mehryar Mohri - Foundations of Machine Learning page 3 This lecture PAC Model Sample complexity - finite hypothesis space - consistent case Sample complexity - finite hypothesis space - inconsistent case Concentration bounds Mehryar Mohri - Foundations of Machine Learning page 4 Definitions X : set of all possible instances or examples, e.g., the set of all men and women characterized by their height and weight. c : X → {0, 1}: the target concept to learn, e.g., c(x)=0 for a male,c(x)=1for a female example. C : concept class, a set of target concepts c. D : target distribution, a fixed probability distribution overX. Training and test examples are drawn according toD. Mehryar Mohri - Foundations of Machine Learning page 5 Definitions S: training sample. H: set of concept hypotheses, e.g., the set of all linear classifiers. The learning algorithm receives sample S and selects a hypothesis h from H approximating c. S Mehryar Mohri - Foundations

文档评论(0)

wfkm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档