《Efficient Learning of Deep Boltzmann Machines_AISTATS2016》.pdf

《Efficient Learning of Deep Boltzmann Machines_AISTATS2016》.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Efficient Learning of Deep Boltzmann Machines_AISTATS2016》.pdf

Efficient Learning of Deep Boltzmann Machines Ruslan Salakhutdinov Hugo Larochelle Brain and Cognitive Sciences and CSAIL, Department of Computer Science, Massachusetts Institute of Technology University of Toronto rsalakhu@ larocheh@ Abstract Many existing machine learning algorithms use “shallow” architectures, including neural networks with only one hid- den layer, kernel regression, support vector machines, and We present a new approximate inference algo- many others. Theoretical results show that the internal rep- rithm for Deep Boltzmann Machines (DBM’s), resentations learned by such systems are incapable of ef- a generative model with many layers of hid- ficiently extracting some types of complex structure from den variables. The algorithm learns a separate rich sensory input (Bengio LeCun, 2007). Training these “recognition” model that is used to quickly ini- systems also requires large amounts of labeled training tialize, in a single bottom-up pass, the values of data. By contrast, object recognition in the visual cortex the latent variables in all hidden layers. We show

文档评论(0)

wfkm + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档