- 1、本文档共8页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
《Efficient Learning of Deep Boltzmann Machines_AISTATS2016》.pdf
Efficient Learning of Deep Boltzmann Machines
Ruslan Salakhutdinov Hugo Larochelle
Brain and Cognitive Sciences and CSAIL, Department of Computer Science,
Massachusetts Institute of Technology University of Toronto
rsalakhu@ larocheh@
Abstract Many existing machine learning algorithms use “shallow”
architectures, including neural networks with only one hid-
den layer, kernel regression, support vector machines, and
We present a new approximate inference algo-
many others. Theoretical results show that the internal rep-
rithm for Deep Boltzmann Machines (DBM’s),
resentations learned by such systems are incapable of ef-
a generative model with many layers of hid-
ficiently extracting some types of complex structure from
den variables. The algorithm learns a separate
rich sensory input (Bengio LeCun, 2007). Training these
“recognition” model that is used to quickly ini-
systems also requires large amounts of labeled training
tialize, in a single bottom-up pass, the values of
data. By contrast, object recognition in the visual cortex
the latent variables in all hidden layers. We show
您可能关注的文档
- 《DDR2与DDR3信号完整性及PCB设计》.pdf
- 《Debian_GNU-Linux_6.0_图形安装教程、网络配置、软件源、基本配置_(超详细)》.pdf
- 《Deep Learning and Its Applications to Signal and Information Processing 》.pdf
- 《Deep learning with COTS HPC systems》.pdf
- 《deep learning实战之word2vec》.pdf
- 《Deep-UV LEDs - physics》.pdf
- 《DeepUV 轻松制作UV贴图》.pdf
- 《DEIF-OPC远程通讯软件》.pdf
- 《Delivering joined–up government in the UK dimensions》.pdf
- 《DELL_6_SIGMA_GB_TRAINING_1》.ppt
文档评论(0)