周涛-复杂网络中信息过滤.pdfVIP

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
周涛-复杂网络中信息过滤,复杂网络周涛,复杂网络中的社区结构,复杂网络,复杂网络理论及其应用,复杂系统与复杂网络,复杂网络理论,复杂网络模型,matlab复杂网络工具箱,复杂网络基础理论

Information Extracting from Complex Networks: Ranking, Predicting and Recommending Tao Zhou Web Sciences Center, UESTC Department of Modern Physics, USTC Email Address: zhutouster@ Blog:/u/p Content • Basic concepts on recommender systems - Why: Motivation and Background - What: Fundamental problem on recommending - How: Main Methods • Significance of diversity and novelty • Metrics • Diversity-accuracy dilemma • Discussion and Outlook • Ranking (appendix) • Link Prediction (appendix) Motivation and Background • The exponential growth of the Internet and World Wide Web confronts people with information overload: they encounter too much data and sources to be able to find those most relevant for them. People may choose from thousands of movies, millions of books and billions of web pages. The amount of information is increasing more quickly than our processing ability. • Personalized recommender systems provide a promising way to solve the information overload problem. • Personalized recommender systems have already been successfully applied in many e-commerce web sites, such as A . • Information filtering techniques are shifting from finding out what you want to what you like, from centralized to decentralized, from population-based to personalized. Problem Description – The Simplest Version Known information: the record of interactions between users and objects, the users’ profiles, the objects’ attributes, the content, the time stamps, the user-user relationships, etc. Required information: whether a target user will like an unselected object, and if so, to what extent he/she likes it. Basically, a personalized recommender system should provide an ordered list of unselected objects to every target user. Personalized recommender systems u

文档评论(0)

mydoc + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档