eviews使用方法实例.doc

  1. 1、本文档共70页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
eviews使用方法实例,eviews使用方法,eviewsarima操作实例,eviews实例,eviews8.0使用教程,eviews使用教程,eviews使用指南与案例,eviews7.2使用教程,eviews8.0使用指南,eviews6.0使用教程

应用时间序列分析 实验手册 目 录 目 录 2 第二章 时间序列的预处理 3 一、平稳性检验 3 二、纯随机性检验 9 第三章 平稳时间序列建模实验教程 10 一、模型识别 10 二、模型参数估计(如何判断拟合的模型以及结果写法) 13 三、模型的显著性检验 17 四、模型优化 18 第四章 非平稳时间序列的确定性分析 19 一、趋势分析 19 二、季节效应分析 34 三、综合分析 38 第五章 非平稳序列的随机分析 44 一、差分法提取确定性信息 44 二、ARIMA模型 58 三、季节模型 62 第二章 时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例2.1 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据 文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据 2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline; 绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图 图3:年份和产出的散点图 (二)自相关图检验 例2.3 导入数据,方式同上; 在Quick菜单下选择自相关图,对Qiwen原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析 图2:输入序列名称 图2:选择相关分析的对象 图3:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.) 有的题目平稳性描述可以模仿书本33页最后一段. (三)平稳性检验还可以用: 单位根检验:ADF,PP检验等; 非参数检验:游程检验 图1:序列的单位根检验 图2:单位根检验的方法选择 图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。 二、纯随机性检验 计算Q统计量,根据其取值判定是否为纯随机序列。 例2.3的自相关图中有Q统计量,其P值在K=6、12的时候均比较大,不能拒绝原假设,认为 该序列是白噪声序列。 另外,小样本情况下,LB统计量检验纯随机性更准确。 第三章 平稳时间序列建模实验教程 一、模型识别 1.打开数据 图1:打开数据 2.绘制趋势图并大致判断序列的特征 图2:绘制序列散点图 图3:输入散点图的两个变量 图4:序列的散点图 3.绘制自相关和偏自相关图 图1:在数据窗口下选择相关分析 图2:选择变量 图3:选择对象 图4:序列相关图 4.根据自相关图和偏自相关图的性质确定模型类型和阶数 如果样本(偏)自相关系数在最初的d阶明显大于两倍标准差范围,而后几乎95%的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。这时,通常视为(偏)自相关系数截尾。截尾阶数为d。 本例: 自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表明序列明显地短期相关。但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾 偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾 所以可以考虑拟合模型为AR(1) 自相关系数 偏相关系数 模型定阶 拖尾 P阶截尾 AR(p)模型 Q阶截尾 拖尾 MA(q)模型 拖尾 拖尾 ARMA(P,Q)模型 具体判别什么模型看书58到62的图例。 : 二、模型参数估计 根据相关图模型确定为AR(1),建立模型估计参数 在ESTIMATE中按顺序输入变量cx c cx(-1)或者cx c ar(1) 选择LS参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。 细心的同学可能发现两个模型的C取值不同,这是

文档评论(0)

docindpp + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档