吉林大学大一高数第四章第六节渐近线与图形的 描绘.pptVIP

吉林大学大一高数第四章第六节渐近线与图形的 描绘.ppt

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第六节 一、 曲线的渐近线 1. 水平与竖(垂,铅)直渐近线 2. 斜渐近线 例2. 求曲线 二、函数图形的描绘 例3. 描绘 例4. 描绘方程 6)绘图 例5. 描绘函数 思考与练习 2. 曲线 备用题 求笛卡儿叶形线 笛卡儿叶形线 * 一、 曲线的渐近线 二、 函数图形的描绘 机动 目录 上页 下页 返回 结束 函数图形的描绘 第四章 无渐近线 . 点 M 与某一直线 L 的距离趋于 0, 定义 . 若曲线 C上的点M 沿着曲线无限地远离原点 时, 则称直线 L 为 曲线C 的渐近线 . 例如, 双曲线 有渐近线 但抛物线 或为“纵坐标差” 机动 目录 上页 下页 返回 结束 若 则曲线 有水平渐近线 若 则曲线 有竖直渐近线 例1. 求曲线 的渐近线 . 解: 为水平渐近线; 为竖直渐近线. 机动 目录 上页 下页 返回 结束 斜渐近线 若 机动 目录 上页 下页 返回 结束 的渐近线 . 解: 所以有竖直渐近线 及 又因 为曲线的斜渐近线 . 机动 目录 上页 下页 返回 结束 步骤 : 1. 确定函数 的定义域 , 期性 ; 2. 求 并求出 及 3. 列表判别增减及凹凸区间 , 求出极值和拐点 ; 4. 求渐近线 ; 5. 确定某些特殊点 , 描绘函数图形 . 为 0 和不存在 的点 ; 并考察其对称性及周 机动 目录 上页 下页 返回 结束 的图形. 解: 1) 定义域为 无对称性及周期性. 2) 3) (极大) (拐点) (极小) 4) 机动 目录 上页 下页 返回 结束 的图形. 解: 1) 定义域为 2) 求关键点 机动 目录 上页 下页 返回 结束 3) 判别曲线形态 (极大) (极小) 4) 求渐近线 为竖直渐近线 无定义 机动 目录 上页 下页 返回 结束 又因 即 5) 求特殊点 为斜渐近线 机动 目录 上页 下页 返回 结束 (极大) (极小) 斜渐近线 竖直渐近线 特殊点 机动 目录 上页 下页 返回 结束 无定义 的图形. 解: 1) 定义域为 图形对称于 y 轴. 2) 求关键点 机动 目录 上页 下页 返回 结束 3) 判别曲线形态 (极大) (拐点) (极大) (拐点) 为水平渐近线 5) 作图 4) 求渐近线 机动 目录 上页 下页 返回 结束 水平渐近线 ; 竖直渐近线; 内容小结 1. 曲线渐近线的求法 斜渐近线 按作图步骤进行 2. 函数图形的描绘 机动 目录 上页 下页 返回 结束 1. 曲线 (A) 没有渐近线; (B) 仅有水平渐近线; (C) 仅有竖直渐近线; (D) 既有水平渐近线又有铅直渐近线. 提示: 机动 目录 上页 下页 返回 结束 拐点为 , 凸区间是 , 的凹区间是 , 提示: 及 渐近线 . 机动 目录 上页 下页 返回 结束 的渐近线 . 解: 令 y = t x , 代入原方程得曲线的参数方程 : 因 所以笛卡儿叶形线有斜渐近线 机动 目录 上页 下页 返回 结束 *

文档评论(0)

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档