数学同步练习题考试题试卷教案高一数学圆锥曲线与方程练习题2.doc

数学同步练习题考试题试卷教案高一数学圆锥曲线与方程练习题2.doc

  1. 1、本文档共33页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数学同步练习题考试题试卷教案高一数学圆锥曲线与方程练习题2.doc

本资料来源于《七彩教育网》 解答题练习 1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设、分别是椭圆的左、右焦点. (Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值; (Ⅱ)l与椭圆交于不同的两点C、Dl的方程;若不存在,请说明理由. 2、)已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上. (1)求动圆圆心的轨迹M的方程; (i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由 (ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围. 3、)(1)在双曲线xy=1上任取不同三点A、B、C,证明:⊿ABC的垂心H也在该双曲线上; (2)若正三角形ABC的一个顶点为C(―1,―1),另两个顶点A、B在双曲线xy=1另一支上,求顶点A、B的坐标。 4、)为方向向量的直线l过点(0, ),抛物线C:(p0)的顶点关于直线l的对称点在该抛物线上. (Ⅰ)求抛物线C的方程; (Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,A、B异于原点),试求点N的轨迹方程. 5、2008届高三第一次联考)已知线段AB过轴上一点,斜率为,两端点A,B到轴距离之差为, (1)求以O为顶点,轴为对称轴,且过A,B两点的抛物线方程; (2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求证:直线MN过一定点; 6、(江西省五校2008届高三开学联考)已知圆上的动点,点Q在NP上,点G在MP上,且满足. (I)求点G的轨迹C的方程; (II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由. 、安徽省淮南市2008届高三第一次模拟考试x2的焦点,离心率等于. (1)求; (2)过,=λ1,=λ2,求证λ1+λ2为定值. 8、,. (Ⅰ)⑴当点P在y轴上移动时,求点M的轨迹C的方程; (Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且. 9、轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点、,点关于轴的对称点为. (Ⅰ)求椭圆W的方程; (Ⅱ)求证: (); (Ⅲ)求面积的最大值. 10、,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0. (I)求抛物线C的焦点坐标; (II)若点M满足,求点M的轨迹方程. 11、圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C. (I)求曲线C的方程; (II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点. 12、的一条渐近线方程为,两条准线的距离为l. (1)求双曲线的方程; (2)直线l过坐标原点O且和双曲线交于两点M、N,点P为双曲线上异于M、N的一点,且直线PM,PN的斜率均存在,求kPM·kPN的值. 13、+.记动点C的轨迹为曲线W. (Ⅰ)求W的方程; (Ⅱ)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点P和Q, 求k的取值范围; (Ⅲ)已知点M(,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量与共线?如果存在,求出k的值;如果不存在,请说明理由. 14、2008年高三统一练习已知点分别是射线,上的点,为坐标原点,且的面积为定值2. (I)求中点轨迹的方程; (II)过作直线与曲线交于两点,与分别交于点,若点恰为线段的三等分点,求此时直线的方程. 、与抛物线的焦点重合,过的直线与椭圆交于A、B两点,与抛物线交于C、D两点.当直线与x轴垂直时,. (Ⅰ)求椭圆的方程; (II)求过点O、,并且与椭圆的左准线相切的圆的方程; (Ⅲ)求的最大值和最小值. 16、及椭圆,过点的动直线与椭圆相交于两点. (Ⅰ)若线段中点的横坐标是,求直线的方程; (Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由. 17、,过点的直线与抛物线相交于A、B两点,分别过点A、B作抛物线的两条切线和的斜率之积为定值; (Ⅰ)证明:直线和的斜率之积为定值; (Ⅱ)求点M的轨迹方程。 解:(I)依题意,直线l的斜率存在,设直线l的方程为y=kx+p 18、中,,且。现建立以A点为坐标原点,以的平分线所在直线为x轴的平面直角坐标系,如图所示。 (1)求AB、AC所在的直线方程; (2)求以AB、AC所在的直线为渐近线且过点D的双曲线的方程; (3

文档评论(0)

cnsg + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档