高中数学《集合的含义及其表示》教案1 北师大必修1【荐】.pdfVIP

高中数学《集合的含义及其表示》教案1 北师大必修1【荐】.pdf

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高中数学《集合的含义及其表示》教案1 北师大必修1【荐】.pdf

1.1.1 集合的含义及其表示(一) 教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和 集合中元素的特性. 了解有限集、无限集、空集概念, 教学重点:集合概念、性质;“∈”,“ ”的使用 教学难点:集合概念的理解; 课 型:新授课 教学手段: 教学过程: 一、 引入课题 军训前学校通知:8 月 15 日8 点,高一年级在体育馆集合进行军训动员;试问这个通知 的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是 高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课 题),即是一些研究对象的总体。 研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学 中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦 的基石。集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基 础。(参看阅教材中读材料P17 )。 下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。 二、 新课教学 “物以类聚,人以群分”数学中也有类似的分类。 如:自然数的集合 0,1,2,3,…… 如:2x-13,即 x2 所有大于 2 的实数组成的集合称为这个不等式的解集。 如:几何中,圆是到定点的距离等于定长的点的集合。 1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,… 集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,… 2、元素与集合的关系 a 是集合A 的元素,就说 a 属于集合A , 记作 a∈A , a 不是集合A的元素,就说 a 不属于集合 A, 记作 aA 思考 1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评, 进而讲解下面的问题。 例 1:判断下列一组对象是否属于一个集合呢? 用心   爱心   专心  1 (1)小于 10 的质数(2)著名数学家(3)中国的直辖市(4)maths 中的字母 (5)book 中的字母(6)所有的偶数(7)所有直角三角形(8)满足 3x-2x+3 的全体实数 (9)方程x 2 x 1 0 的实数解 评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。 3、集合的中元素的三个特性: 1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者 不是这个给定的集合的元素。 2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入 一个集合时,仅算一个元素。比如:book 中的字母构成的集合 3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅 需比较它们的元素是否一样,不需考查排列顺序是否一样。 集合元素的三个特性使集合本身具有了确定性和整体性。 4、数的集简称数集,下面是一些常用数集及其记法: 非负整数集(即自然数集) 记作:N 有理数集 Q 正整数集 N*或 N+ 实数集 R 整数集 Z 用心   爱心   专心  2   5、集合的分类 原则:集合中所含元素的多少 ①有限集 含有限个元素,如 A={-2,3} ②无限集 含无限个元素,如自然数集 N,有理数 ③空 集 不含任何元素,如方程x2+1=0 实数解集。专用标记:Φ 三、 课堂练习 1、用符合“∈”或“”填空:课本 P15 练习惯 1 2、判断下面说法是否正确、正确的在( )内填“√”,错误的填“×” (1)所有在N 中的元素都在N*中( ) (2)所有在N 中的元

文档评论(0)

cnsg + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档