Approximating Average Parameters of Graphs.pptVIP

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Approximating Average Parameters of Graphs.ppt

Approximating Average Parameters of Graphs Oded Goldreich, Weizmann Institute Dana Ron, Tel Aviv University The Type of Problems we Consider The Particular Problems we Study Our Results Our Results Cont’ Our Results: Summary Estimating Average Degree Estimating Average Degree Cont’ Estimating Average Degree Cont’ Estimating Average Degree Cont’ Estimating Average Degree Summary Estimating Average Degree L.B. Estimating Average Distance Estimating Average Distance Estimating Average Distance L.B. (for Problem 2 – avg. dist. to vertex s) Summary * Let f be a “natural” function defined on graphs. The domain of f : vertices/pairs of vertices/etc. The goal: Estimate the average value of f . The means: (1) Queries to f ; (2) Queries to the graph: a. Neighbor queries (who is j’th neighbor of v?) b. Vertex-pair queries (are u and v neighbors?) Questions of interest: (1) Can we do this much more efficiently as compared to general functions? (2) How do different queries influence the complexity? Problem1: Estimating the average degree in a graph (first considered by Feige (STOC04)) Problem2: Estimating the average distance to a given vertex in a graph Problem3: Estimating the average distance between pairs of vertices in a graph deg(v) distv(u) dist(u,v) Problem1: Estimating average degree in a (simple) graph G=(V,E) , |V|=n, |E|=m, dG=2m/n deg(v) UB: Can obtain (1+?)-approximation in time n1/2 poly(log n / ?) by using neighbor queries (only). LB: A (1+?)-approximation requires ?((n / ?)1/2) queries (when allowed all types of queries). Compare to Feige: (2+?)-approx in similar complexity using degree queries only (queries to f ); (2-o(1))-approx requires ?(n) degree queries. Note: Can improve when avg degree is high: (n/dG)1/2 instead of n1/2 with matching lower bound. Problem2: Estimating the average distance to a vertex Problem3: Estimating the average distance between

文档评论(0)

caijie1982 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档